Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 43(48): 8231-8242, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37751999

RESUMO

Dopamine is a key neurotransmitter in the signaling cascade controlling ocular refractive development, but the exact role and site of action of dopamine D1 receptors (D1Rs) involved in myopia remains unclear. Here, we determine whether retinal D1Rs exclusively mediate the effects of endogenous dopamine and systemically delivered D1R agonist or antagonist in the mouse form deprivation myopia (FDM) model. Male C57BL/6 mice subjected to unilateral FDM or unobstructed vision were divided into the following four groups: one noninjected and three groups that received intraperitoneal injections of a vehicle, D1R agonist SKF38393 (18 and 59 nmol/g), or D1R antagonist SCH39166 (0.1 and 1 nmol/g). The effects of these drugs on FDM were further assessed in Drd1-knock-out (Drd1-KO), retina-specific conditional Drd1-KO (Drd1-CKO) mice, and corresponding wild-type littermates. In the visually unobstructed group, neither SKF38393 nor SCH39166 affected normal refractive development, whereas myopia development was attenuated by SKF38393 and enhanced by SCH39166 injections. In Drd1-KO or Drd1-CKO mice, however, these drugs had no effect on FDM development, suggesting that activation of retinal D1Rs is pertinent to myopia suppression by the D1R agonist. Interestingly, the development of myopia was unchanged by either Drd1-KO or Drd1-CKO, and neither SKF38393 nor SCH39166 injections, nor Drd1-KO, affected the retinal or vitreal dopamine and the dopamine metabolite DOPAC levels. Effects on axial length were less marked than effects on refraction. Therefore, activation of D1Rs, specifically retinal D1Rs, inhibits myopia development in mice. These results also suggest that multiple dopamine D1R mechanisms play roles in emmetropization and myopia development.SIGNIFICANCE STATEMENT While dopamine is recognized as a "stop" signal that inhibits myopia development (myopization), the location of the dopamine D1 receptors (D1Rs) that mediate this action remains to be addressed. Answers to this key question are critical for understanding how dopaminergic systems regulate ocular growth and refraction. We report here the results of our study showing that D1Rs are essential for controlling ocular growth and myopia development in mice, and for identifying the retina as the site of action for dopaminergic control via D1Rs. These findings highlight the importance of intrinsic retinal dopaminergic mechanisms for the regulation of ocular growth and suggest specific avenues for exploring the retinal mechanisms involved in the dopaminergic control of emmetropization and myopization.


Assuntos
Dopamina , Miopia , Masculino , Camundongos , Animais , Dopamina/metabolismo , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Camundongos Endogâmicos C57BL , Miopia/genética , Miopia/metabolismo , Retina/metabolismo , Receptores de Dopamina D1/metabolismo
2.
Invest Ophthalmol Vis Sci ; 63(1): 24, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-35050306

RESUMO

Purpose: To learn more about the locations of dopamine D2 receptors (D2Rs) that regulate form-deprivation myopia (FDM), using different transgenic mouse models. Methods: One eye of D2R-knockout (KO) mice and wild-type littermates was subjected to four weeks of monocular FDM, whereas the fellow eye served as control. Mice in both groups received daily intraperitoneal injections of either the D2R antagonist sulpiride (8 µg/g) or vehicle alone. FDM was also induced in retina- (Six3creD2Rfl/fl) or fibroblast-specific (S100a4creD2Rfl/fl) D2R-KO mice. A subset of retina-specific D2R-KO mice and D2Rfl/fl littermates were also given sulpiride or vehicle injections. Refraction was measured with an eccentric infrared photorefractor, and other biometric parameters were measured by optical coherence tomography (n ≈ 20 for each group). Results: FDM development was attenuated in wild-type littermates treated with sulpiride. However, this inhibitory effect disappeared in the D2R-KO mice, suggesting that antagonizing D2Rs suppressed myopia development. Similarly, the development of myopia was partially inhibited by retina-specific (deletion efficiency: 94.7%) but not fibroblast-specific (66.9%) D2R-KO. The sulpiride-mediated inhibitory effects on FDM also disappeared with retinal D2R-KO, suggesting that antagonizing D2Rs outside the retina may not attenuate myopia. Changes in axial length were less marked than changes in refraction, but in general the two were correlated. Conclusions: This study demonstrates that D2Rs located in the retina participate in dopaminergic regulation of FDM in mice. These findings provide an important and fundamental basis for further exploring the retinal mechanism(s) involved in dopamine signaling and myopia development.


Assuntos
Regulação da Expressão Gênica , Miopia/genética , RNA/genética , Receptores de Dopamina D2/genética , Retina/metabolismo , Animais , Modelos Animais de Doenças , Eletrorretinografia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Miopia/metabolismo , Miopia/patologia , Receptores de Dopamina D2/biossíntese , Retina/patologia
3.
Invest Ophthalmol Vis Sci ; 61(6): 47, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32572456

RESUMO

Purpose: The purpose of this study was to explore the role and mechanism of D2 receptor (D2R) involvement in myopia development and the effects of the full D2R agonist quinpirole and partial D2R agonist aripiprazole on postnatal refractive development and form-deprivation myopia (FDM). Methods: C57BL/6 ("B6") mice, raised either in a visually normal or unilateral form-deprivation environment, were divided into three subgroups, including an intraperitoneally injected (IP) vehicle group and two quinpirole (1 and 10 µg/g body weight) treatment groups. The effects of quinpirole on FDM were further verified in D2R-knockout (KO) mice and corresponding wild-type littermates. Then, the modulation of normal vision development and FDM by aripiprazole (1 and 10 µg/g body weight, IP) was assessed in C57BL/6 mice. All biometric parameters were measured before and after treatments, and retinal cyclic adenosine phosphate (cAMP) and phosphorylated ERK (pERK) levels were analyzed to assess D2R-mediated signal transduction. Results: Neither quinpirole nor aripiprazole affected normal refractive development. FDM development was inhibited by quinpirole at low dose but enhanced at high dose, and these bidirectional effects were validated by D2R-specificity. FDM development was attenuated by the partial D2R agonist aripiprazole, at high dose but not at low dose. Quinpirole caused a dose-dependent reduction in cAMP levels, but had no effect on pERK. Aripiprazole reduced cAMP levels at both doses, but caused a dose-dependent increase of pERK in the form-deprived eyes. Conclusions: Reduction of D2R-mediated signaling contributes to myopia development, which can be selectively attenuated by partial D2R agonists that activate D2Rs under the low dopamine levels that occur with FDM.


Assuntos
Miopia/tratamento farmacológico , Miopia/metabolismo , Quimpirol/farmacologia , Receptores de Dopamina D2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Agonistas de Dopamina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Dopamina D2/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...